Interaction of environmental factors affecting wheat performance

- A case for multidisciplinary research efforts

Topic:

There has been recent progress in individual scientific disciplines, but these advances within single disciplines, alone, cannot solve the challenges of increasing yield

Therefore multidisciplinary approaches must be implemented to tackle major constraints to achieving sufficient grain yield in the future

Bernd Wollenweber Aarhus University Department of Agroecology

Grain production and consumption

World Grain Production and Consumption, 1960-2011

- Dangerously small
 margin between
 grain consumption
 and grain production
- We face long-term trends that:
 - increase food demand
 - limit food production

Environmental and agronomical constraints to crop yield and quality

Agronomical factors and environmental constraints will influence the levels of a wide range of (*in*)organic compounds in crops that in turn affect key *physiological processes* and may finally affect grain yield and quality

Environmental and agronomical constraints to crop yield and quality

Agronomical factors and environmental constraints will influence the levels of a wide range of (*in*)organic compounds in crops that in turn affect key *physiological processes* and may finally affect grain yield and quality

Consequence: The need to focus on **G x E x M**

Constraints to crop yield and quality

Constraints to crop yield and quality

Plant Science 210 (2013) 159-176

Review

Plant science and agricultural productivity: Why are we hitting the yield ceiling?

Stève de Bossoreille de Ribou^a, Florian Douam^a, Olivier Hamant^a, Michael W. Frohlich^{a,b}, Ioan Negrutiu^{a,*}

FOOD SECURITY

Global crop improvement networks to bridge technology gaps

Matthew P. Reynolds^{1,*}, Jonathan Hellin¹, Bram Govaerts¹, Petr Kosina¹, Kai Sonder¹, Peter Hobbs² and Hans Braun¹

 International Maize and Wheat Improvement Center (CIMMYT, Int.). Km. 45 via México-Veracruz. Texcoco, CP56120, Edo de México, México
 ² Cornell University, Ithaca, New York, USA

* To whom correspondence should be addressed. E-mail: m.reynolds@cgiar.org

Journal of Experimental Botany, Vol. 63, No. 1, pp. 1–12, 2012 doi:10.1093/jxb/err241

www.jxb.oxfordjournals.org

Olesen, J. & Wollenweber, B. (2010) Environmental changes and impacts on yield of winter wheat. *In: Causes of yield stagnation in winter wheat in Denmark. Petersen, J., Haastrup, M, Knudsen, I. & Olesen, J. (eds.) DJF Rapport 147, pp. 35-53.*

REVIEW PAPER

Raising yield potential of wheat. I. Overview of a consortium approach and breeding strategies

Matthew Reynolds^{1,*}, David Bonnett¹, Scott C. Chapman², Robert T. Furbank³, Yann Manès¹, Diane E. Mather⁴ and Martin A. J. Parry⁵

GM as a route for delivery of sustainable crop protection

Toby J. A. Bruce*

Biological Chemistry Department, Rothamsted Research, Harpenden, Herts AL5 2JQ, UK

* To whom correspondence should be addressed. E-mail: toby.bruce@rothamsted.ac.uk

Journal of Experimental Botany, Vol. 63, No. 2, pp. 537–541, 2012 doi:10.1093/jxb/err281

Climate change will increase the **frequency**, **intensity** and **duration** of periods with extreme climatic conditions

Risks from climate change, by reason for concern [Smith et al. PNAS 2009]

Level of additional risk due to climate change

High

Very high

Moderate

Undetectable

2014

Earlier research concluded that the initial stages of climate change would bring net benefits to global agriculture due to carbon fertilization and longer growing seasons

Newer experimental studies have sharply reduced older estimates of carbon fertilization effects

The effect of temperature on many crops has been found to involve thresholds, above which yields rapidly decline

Temperature thresholds

Table 1

Summary of mean $(\pm se)$ of lethal minimum (*T*Lmin), lethal maximum (*T*Lmax), base (*T*min), optimum (*T*opt) and maximum (*T*max) temperatures for various processes and phenological phases in wheat

Processes		Mean temperature $(\pm se)$ (°C)	n
Lethal limits	<i>T</i> Lmin	-17.2 (1.2)	17
	TLmax	47.5 (0.5)	2
Leaf initiation	Tmin	-1.0 (1.1)	12
	Topt	22.0 (0.4)	9
	Tmax	24.0 (1.0)	5
Shoot growth	<i>T</i> min	3.0 (0.4)	5
	Topt	20.3 (0.3)	6
	Tmax	>20.9 (0.2)	6
Root growth	Tmin	2.0	1
	Topt	<16.3 (3.7)	3
	Tmax	>25.0 (5.0)	3
Phenological phases			
Sowing to emergence	Tmin	3.5 (1.1)	8
	Topt	22.0 (1.6)	11
	Tmax	32.7 (0.9)	10
Vernalization	Tmin	-1.3(1.5)	6
	Topt	4.9 (1.1)	11
	Tmax	15.7 (2.6)	7
Terminal spikelet	Tmin	1.5 (1.5)	2
	Topt	10.6 (1.3)	5
	Tmax	> 20.0	1
Anthesis	Tmin	9.5 (0.1)	3
(Topt	21.0 (1.7)	2
	Tmax	31.0	1
Grain-filling	$T\min$	9.2 (1.5)	6
	Topt	20.7 (1.4)	7
	Tmax	35.4 (2.0)	5

n is the number of literature sources used to calculate means and se.

European Journal of Agronomy

European Journal of Agronomy 10 (1999) 23-36

Temperatures and the growth and development of wheat: a review

John R. Porter^{a,*}, Megan Gawith^b

Global Change Biology

Global Change Biology (2014) **20**, 408–417, doi: 10.1111/gcb.12389

Temperatures and the growth and development of maize and rice: a review

BERTA SÁNCHEZ*, ANTON RASMUSSEN† and JOHN R PORTER†

Drought and heat waves reduce crop yield

Crop yields can drop by 3 – 5% with every 1°C increase in temperature

..Global maize and wheat production declined by 3.8% and 5.5%, respectively...

Climate trends were large enough in some countries to offset a significant portion of the increases in average yields that arose from technology, CO₂ fertilization, and other factors...

Climate Trends and Global Crop Production Since 1980 David B. Lobell, Wolfram Schlenker, Justin Costa-Roberts Sciencexpress 5 May 2011

Temperature change forecast 2071-2100 period, relative to the 1961-1990 period

The The The The Economist

NOVEMBER 27TH-DECEMBER 3RD 2010

Econ DECEMBER 5TH-11TH 2009

Eci N

NOVEMBER 21ST-27TH 2009 Economist.com

Dealing with America's deficit Obama's timid trip to Asia Remote control for your car Peter Drucker, still king of the gurus The scientist who saw Nessie

How to lin climate c climate change

A 14-PAGE SPECIAL REPORT

The response to environmental stress is complex

Imposition of stress – Proposition for research

- Biotic stress vs. abiotic stress
- Abiotic Stress Interactions: single vs. multiple stress events single vs. multiple stress types

Little is known about the **interaction** of these stresses and the consequences for crop quality

Interaction of high-temperature events

Climate Change, Climatic Variability and Agriculture in Europe: An integrated Assessment (CLIVARA)

Anthesis

Final harvest

Double-ridge stage (the spikelet formation phase, in which two bracts mark the end of the spikelet)

Interaction of high-temperature events

Climate Change, Climatic Variability and Agriculture in Europe: An integrated Assessment (CLIVARA)

Simulated and measured number of grains

Lack of interaction between extreme high-temperature events at vegetative and reproductive growth stages in wheat. Wollenweber, B., Schellberg, J. and Porter, J.R. *Journal of Agronomy and Crop Science* 189, 1-11 (2003)

Interaction between stress events & stress types

Water deficits:

Exploring the asynchronous protein metabolism in single kernels of wheat studied by NMR spectroscopy and chemometrics. Winning, H.; Viereck, N.; Wollenweber, B.; Larsen, F.H.; Jacobsen, S.; Søndergaard, I.; Balling Engelsen, S. *Journal of Experimental Botany 60: 291-300 (2009)*

Global dimming:

Long-term low radiation decreases leaf photosynthesis, photochemical efficiency and grain yield in winter wheat. Mu, H.; Jiang, D.; Wollenweber, B.; Dai, T.; Jing, Q.; Cao, W. Journal of Agronomy and Crop Science 196: 38-47 (2010)

Effects of shading on morphology, physiology and grain yield of winter wheat. Li, H; Jiang, D.; Wollenweber, B.; Dai, T.; Cao, W. *European Journal of Agronomy 33:267-275 (2010)*

Waterlogging + water deficits:

Effects of post-anthesis drought and waterlogging on accumulation of high molecular-weight glutenin subunits and glutenin macro polymer content in wheat grain. Jiang, D, Yue, H., Wollenweber, B., Tan, W., Dai, T., Jing, Q., Cao, W. *Journal of Agronomy and Crop Science 195 (2): 89-97 (2009)*

Waterlogging pretreatment during vegetative growth improve tolerance to waterlogging after anthesis in wheat. Li, C; Jiang, D.; Wollenweber, B.; Li, Y.; Dai, T.; Cao, W. *Plant Science 180: 672-678 (2011)*

High-temperature + water deficits:

Implications of high-temperature events and water deficits on protein profiles in wheat (Triticum aestivum L. cv. Vinjett) grain. Yang, F., Dysted Jørgensen, A., Li, H., Søndergaard, I., Finnie, C., Jiang, D., Wollenweber, B., Jacobsen, S. *Proteomics 11: 1684-1695 (2011)* Temperature-extremes are more important than CO₂-increases for crop yields

Critical temperature thresholds need identification

The study of adaptation to extreme weather conditions requires a more integrated research approach

Lack of interaction between extreme high-temperature events at vegetative and reproductive growth stages in wheat. Wollenweber, B., Schellberg, J. and Porter, J.R. *Journal of Agronomy and Crop Science* 189, 1-11 (2003) Despite recent achievements in conventional plant breeding and genomics, the rate of increase of crop yields is declining.

Advances within single disciplines, alone, cannot solve the challenges of increasing yield.

There has been recent progress in individual disciplines, but multidisciplinary approaches must be implemented to tackle major constraints to achieving sufficient grain yield in the future.

The need for an integrated research approach

Advances in Genetics

enhanced marker technology enhanced QTL detection methods enhanced genotype to phenotype linkages

Advances in Physiology

the plants perspective (sensing stress) complex trait physiology prediction of consequences of genetic variation

Advances in Modelling

Climate, agronomical, physiological & biochemical models

The need to understand the effects of gene function on crop performance under various environmental conditions and the processing of this knowledge into robust simulation models

Need for multidisciplinary research towards a second green revolution. Wollenweber, B., Porter, J.R. & Lübberstedt, T. *Current Opinion in Plant Biology 8: 337-341* (2005) The Rubisco enzyme and agricultural productivity. Porter, J.R.; Wollenweber, B. *Nature 463: 876* (2010)

The need for an integrated research approach

Implementation – The 'Heat-Wheat' project

Strategic research objectives

to exploit synergies between agronomic, physiological and genetic research and crop modeling

to screen for key regulatory processes of adaptation to high-temperature episodes

Key traits

Photosynthesis Stress response Grain yield and quality

'Heat-Wheat' project - Framework

Physiology - development of phenotyping tools

Screening for heat stress tolerance

Genetics - QTL's

Introduction of genes by marker assisted backcrossing Detailed mapping of major genes for stress tolerance

Agronomy - Impact assessment

Genotypic stress responses on phenology, yield and quality

Modelling - Impact prediction

Modeling genotype responses to heat stress

Phenotyping leaves

 F_v/F_m (maximum quantum efficiency of PS_{II}) in leaves can be used as a phenotyping tool to screen for heat tolerance

Genetics

Phenotyping of wheat cultivars for heat tolerance using chlorophyll a fluorescence Dew Kumari Sharma, Sven Bode Andersen, Carl-Otto Ottosen, Eva Rosenqvist *Functional Plant Biology*, **39**, 936–947 (2012)

Phenotyping grains

Heat stress effects on phenology and yield

'Semi-field' experiments with 140 -> 15 cultivars

Single seed near infrared (NIR) transmission spectroscopy

ECVA score plot of two first components of selected samples for control and heat treatments

Identification of extreme winter wheat varieties using single seed near infrared (NIR) diffuse transmission spectroscopy in combination with Puchweins algorithm and extended canonical variates analysis (ECVA). Gislum, R.; Shetty, N.; Jørgensen, J.R.; Wang, X.; Li, H.; Wollenweber, B. in preparation

Genetics and Biotechnology

• 3 heat inducible QTLs related to F_v/F_m mapped

Dew Kumari Sharma (2013) -Heat tolerance in wheat: Linking physiological phenotyping to quantitative genetics. PhD dissertation 2013

Heat stress effects on phenology

Heat stress impact

'Semi-field' experiments 15 cultivars Field experiment with 9 cultivars

Cultivar		G	Geographical	Height	0.001				Treatment effect
number	Cultivar name	e Source origin (cm) GS3		GS31	GS65	Control	Heat	(ΔDays)	
810	N/A	IPK	Afghanistan	100	31	53	107	104	-3
490	Balady 16	NGB	Denmark	75	31	54	107	102	-5
1039	C518	IPK	Pakistan	90	29	56	110	105	-5
1110	Kloka WM1353	IPK	Germany	95	28	57	110	102	-8
Taifun	Taifun	NGB	Denmark	64	32	58	112	105	-7
Tercie	Tercie	NGB	Denmark	67	33	58	112	106	-6
Vinjett	Vinjett	NGB	Denmark	76	31	59	107	102	-5
1216	N/A	IPK	Slovakia	94	27	60	114	106	-8
1159	8156 White	IPK	Turkey	76	32	61	115	109	-6
1194	Omskaja 9	IPK	Soviet Union	96	30	64	113	110	-3
882	N/A	IPK	Romania	110	31	64	117	110	-7
579	Postelberger Wechsel St. 61	IPK	Germany	120	33	69	118	111	-7
844	N/A	IPK	Afghanistan	122	35	70	130	118	-12
633	Hörnings Grüne Dame	IPK	Germany	110	40	84	130	123	-7
830	N/A	IPK	Afghanistan	97	42	84	133	125	-8

>> Reduction in grain filling duration

GS31: the start of stem elongation; GS65 is the mid-flowering stage; GS92 is maturity (BBCH scale); expressed as days after sowing (DAS).

Traits in spring wheat cultivars associated with yield loss caused by a heat stress episode after anthesis. Vignjevic, M.; Wang, X.; Olesen, J.; Wollenweber, B. *Journal of Agronomy and Crop Science 201: 32-48 (2015)*

Heat-stress effects on yield

Traits in spring wheat cultivars associated with yield loss caused by a heat stress episode after anthesis. Vignjevic, M.; Wang, X.; Olesen, J.; Wollenweber, B. *Journal of Agronomy and Crop Science 201: 32-48* (2015)

Heat-stress effects on photosynthesis

							~	
	Pn		gs		Tr		Chl content	
Varieties	Control	Heat	Control	Heat	Control	Heat	Control	Heat
490	20.1a ^A	12.0 bcd ^B	0.74a ^A	$0.34b^{B}$	2.0cd ^B	3.9fg ^A	53.0a ^A	$41.1d^{B}$
579	13.5c ^A	$9.6d^{B}$	$0.26b^{A}$	$0.35b^{A}$	2.0cd ^B	$7.3bc^{A}$	49.2b ^A	$44.7c^{B}$
633	13.5c ^A	$8.4d^{B}$	0.40b ^A	0.59ab ^A	$4.2b^{B}$	8.0b ^A	39.8c ^A	$30.5e^{B}$
810	17.4ab ^A	18.7a ^A	0.51ab ^A	0.74a ^A	5.9a ^B	11.9a ^A	49.9b ^A	47.9b ^A
1039	$15.2bc^{A}$	$1.6e^{B}$	0.42b ^A	$0.03c^{B}$	2.6cd ^A	$0.8h^{B}$	48.7b ^A	$32.1e^{B}$
1110	13.5c ^A	12.1bcd ^A	0.33b ^A	0.36b ^A	1.6cd ^B	3.3g ^A	$48.4b^{A}$	47.6b ^A
1159	13.7c ^A	10.3 cd ^B	$0.38b^{A}$	0.25bc ^A	$3.0bc^{A}$	4.3efg ^A	$49.8b^{A}$	$42.5d^{B}$
Taifun	11.7c ^B	$15.6ab^A$	$0.20b^{A}$	0.35b ^A	$1.2d^{B}$	5.9cde ^A	53.8a ^A	51.2a ^B
Terice	12.7c ^A	11.4cd ^A	$0.45b^{A}$	$0.42b^{A}$	2.2cd ^B	6.2bcd ^A	54.3a ^A	$50.4a^{B}$
Vinjett	13.1c ^A	13.9bc ^A	$0.21b^{B}$	$0.48ab^{A}$	1.8cd ^B	5.2def ^A	49.2b ^A	$42.0d^{B}$
Vari	eties	***		**	***		***	:
Treat	Treatments		ns		***		***	
Varieties ×	Treatments	***		**	***		***	:

Effects of heat stress on net photosynthetic CO_2 assimilation rate (Pn), stomatal conductance (gs), transpiration rate (Tr), and chlorophyll content (SPAD) in leaves

Heat-stress effects on leaf proteins

2-DE gels of wheat leaf proteins in variety 810 (A) and 1039 (B)

Rubisco activase Rubisco small subunit Rubisco large subunit

up-regulated in 810 (Tolerant) down-regulated in 1039 (Susceptible)

Other identified proteins: Heat shock proteins Stress defense

Wang X.; Dinler B.S.; Vignjevic M.; Jacobsen S.; Wollenweber B. (2015) Physiological and proteome studies of responses to heat stress during grain filling in contrasting wheat cultivars. Plant Science 230: 33-50.

Multiple stress events and multiple stress types

Treatments

c: control; wd: water deficits; ht: high temperature

Treatments were applied at end of spikelet initiation (A) and/or anthesis (B)

Changes in grain nr

Conclusions

Heat had a larger impact than drought Larger impact when applied at anthesis Drought - no significant differences

Multiple heat and drought events affect grain yield and accumulations of high molecular weight glutenin subunits and glutenin macropolymers in wheat. Zhang, X.; Cai, J.; Wollenweber, B.; Liu, F.; Dai, T.; Cao, W.; Jiang, D. (2013) *Journal of Cereal Science 57: 134-140.*

Multiple stress events and multiple stress types

Accumulation of albumins, globulins, gliadins and glutenins in wheat grains under high- temperature and/or water-deficits applied at terminal spikelet and/or anthesis.

Changes in grain protein fractions

Conclusions

Albumin, globulin and gliadin contents: Stress combinations did not have a significant effect compared to individually applied stresses

Stress combinations resulted in significantly higher contents of glutenins than in the single stress treatments

Implications of high-temperature events and water deficits on protein profiles in wheat (*Triticum aestivum* L. cv. Vinjett) grain Yang F, Dysted-Jørgensen A, Li H, Søndergaard I, Finnie C, Svensson B, Jiang D, Wollenweber B, Jacobsen S *Proteomics* 11: 1684-1695 (2011)

Multiple stress events and multiple stress types

2-DE gels of the **albumin** fraction from wheat grains Treatments: cA-cB cA-wdB cA-htB htA-htB

Changes in grain albumin fraction

Conclusions

Changes in grain protein contents strongly depended on the type of stress interactions applied

Identified proteins responsive to stress episodes play roles in: anti-desiccation, anti-oxidation, carbohydrate metabolism

Implications of high-temperature events and water deficits on protein profiles in wheat (*Triticum aestivum* L. cv. Vinjett) grain Yang F, Dysted-Jørgensen A, Li H, Søndergaard I, Finnie C, Svensson B, Jiang D, Wollenweber B, Jacobsen S *Proteomics* 11: 1684-1695 (2011)

Beneficial interaction of multiple stress events?

Pre-exposure to mild stress during vegetative growth -> effects on stress after anthesis

Effects of drought priming on photosynthesis rate (A_{net}) and Ascorbate peroxidase (APX) activity in wheat leaves under drought stress

Improved tolerance to drought stress after anthesis due to priming before anthesis in wheat (Triticum aestivum L.) var. Vinjett Wang,X.; Vigjevic, M.; Jiang, D.; Jacobsen, S.; Wollenweber, B. *Journal of Experimental Botany* 65:6441-6456 (2015)

107

Differently expressed leaf proteins in primed plants

Improved tolerance to drought stress after anthesis due to priming before anthesis in wheat (Triticum aestivum L.) var. Vinjett Wang,X.; Vigjevic, M.; Jiang, D.; Jacobsen, S.; Wollenweber, B. *Journal of Experimental Botany 65:6441-6456 (2015)*

'Heat-Wheat' project - Conclusions

Physiology - Phenotyping tools established

Screening for heat stress with F_v/F_m Single seed near infrared (NIR) transmission spectroscopy

Genetics - QTL's

3 heat inducible QTLs related to F_v/F_m mapped

Agronomy - Impact assessment

Genotype responses to heat and drought stress & combinations Priming might have the potential to contribute to enhanced tolerance

Modeling - Impact prediction

Modeling genotype response to changes in temperature

Final 'take-home' message

To tackle the challenges facing society (energy, water, climate, food, health), scientists and social scientists must work together.

Yet research that transcends traditional academic boundaries is still unfashionable and poorly rewarded.

Acknowledgements

KU:	AL
Sven Bode Andersen ⁺	Ca
Eva Rosenqvist	Ка
Dew Kumari Sharma	Jø
Fulai Liu	M

AU: Carl Otto Ottosen Katrine Kjær Jørgen E Olesen Marija Vignjevic Xiao Wang

NAU:

Dong Jiang Huawei Li Xia Zhang Qin Zhou

Technical assistance:

AU: Betina Hansen, Jesper Hjort D. Petersen, Palle K. Ahm, Ulla Andersen, Mir Aigne DTU: Ljiljana Nesic⁺, Anne Blicher

Funding:

China Scholarship Council www.csc.edu.cn Thank you!