

Food systems, CSA and Food Security

Post-IPCC AR5 WG2 C7

John R Porter

SCIENCE Copenhagen University DK NRI Greenwich University UK Lincoln University NZ

Topics

IPCC AR5

Post - AR5

Sustainable intensification and new models

Conclusions

IPCC AR5 was Hell!

Food Security: IPCC AR5 - 3 main points

Post AR5 – Food Security

IPCC does synthesis and evaluation

Climate change as an exercise in risk management

FS chapter AR5 – pest and diseases important

FOOD security and climate change

Extremes

IPCC WG2: Food security

Chronic and acute temperature effects on crops

- General response to mean temperatures
- Acute response to extremes

Linkage of local effects to RCPs, time and global changes

Policy makers are interested in this stuff – UK FCO

Chronic - shortening of growing season: wheat Punjab

Acute effect: lethal max T

Acute effect: T max at flowering

Acute flowering effect probability – maize

Summary – Acute flowering probability

Maize (USA): A 1 in more than 100 year event can become a 1 in 50 event for 2-3 degC global warming; can become a 1 in 4-8 year event for 8 degC global warming.

Rice (China): A 1 in more than 100 year event can become a 1 in 10 year event for 2-3 degC global warming; becomes a 1 in 1-4 year event for 5-6 degC global warming.

Wheat (India): A 1 in 100 year event can become a 1 in 20-25 year event for 3-4 degC global warming; and does not change much for 5-6 degC global warming.

Sustainable Intensification and CSA

What does it mean? More for less?

Intensification of what?

What's the metric? System level?

From

Euphytica 17 (1968): 385-403

THE BREEDING OF CROP IDEOTYPES

C. M. DONALD

To

THE DEVELOPMENT OF CROP IDEO-SYSTEMS

Suggestions

Use of identities in conjunction with modelling and experimental studies – model validation

More experimental validation of models

Threshold effects in models

Exploration of the effect of data uncertainty on the accuracy and precision of models and their projections

Summary Points

IPCC

Sustainable Intensification – quantitative and qualitative aspects

The need for metrics – identities

Thanks

Eskild Bennetzen - KU

Pete Smith - Aberdeen University

John Ingram - Oxford University

IPCC WG2 Chapter 7 colleagues

Climate and Food Security Group - KU

